Physical Unclonable Function Hardware Keys Utilizing Kirchhoff-law-johnson-noise Secure Key Exchange and Noise-based Logic
نویسندگان
چکیده
Weak unclonable function (PUF) encryption key means that the manufacturer of the hardware can clone the key but not anybody else. Strong unclonable function (PUF) encryption key means that even the manufacturer of the hardware is unable to clone the key. In this paper, first we introduce an “ultra” strong PUF with intrinsic dynamical randomness, which is not only unclonable but also gets renewed to an independent key (with fresh randomness) during each use via the unconditionally secure key exchange. The solution utilizes the Kirchhoff-law-Johnson-noise (KLJN) method for dynamical key renewal and a one-time-pad secure key for the challenge/response process. The secure key is stored in a flash memory on the chip to provide tamper-resistance and nonvolatile storage with zero power requirements in standby mode. Simplified PUF keys are shown: a strong PUF utilizing KLJN protocol during the first run and noise-based logic (NBL) hyperspace vector string verification method for the challenge/response during the rest of its life or until it is re-initialized. Finally, the simplest PUF utilizes NBL without KLJN thus it can be cloned by the manufacturer but not by anybody else.
منابع مشابه
Physical uncloneable function hardware keys utilizing Kirchhoff-law-Johnson-noise secure key exchange and noise-based logic
Weak uncloneable function (PUF) encryption key means that the manufacturer of the hardware can clone the key but anybody else is unable to so that. Strong uncloneable function (PUF) encryption key means that even the manufacturer of the hardware is unable to clone the key. In this paper, first we introduce an "ultra"-strong PUF with intrinsic dynamical randomness, which is not only not cloneabl...
متن کاملUnconditionally secure credit/debit card chip scheme and physical unclonable function
The statistical-physics-based Kirchhoff-law–Johnson-noise (KLJN) key exchange offers a new and simple unclonable system for credit/debit card chip authentication and payment. The key exchange, the authentication and the communication are unconditionally secure so that neither mathematicsnor statistics-based attacks are able to crack the scheme. The ohmic connection and the short wiring lengths ...
متن کاملEnhanced Secure Key Exchange Schemes Based on the Johnson - Noise Scheme
We introduce seven new versions of the Kirchhoff-Law-Johnson-(like)-Noise (KLJN) classical physical secure key exchange scheme. While these practical improvements offer progressively enhanced security and/or speed for the non-ideal conditions, the fundamental physical laws providing the security remain the same.
متن کاملSecure communications using the KLJN scheme - Scholarpedia
Kirchhoff-Law-Johnson-Noise (KLJN) secure key distribution (Cho 2005),(Palmer 2007), (Kish 2006), (Mingesz 2013),(Kish 2009),(Mingesz 2008),(Kish 2006b), is a classical physical scheme that is a potential alternative to quantum key distribution. It is also sometimes loosely referred to as the Kish cipher, however, it is a hardware-based scheme for securely distributing cipher keys, and is not a...
متن کاملGeneralized Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system using arbitrary resistors
The Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system has been introduced as a simple, very low cost and efficient classical physical alternative to quantum key distribution systems. The ideal system uses only a few electronic components-identical resistor pairs, switches and interconnecting wires-in order to guarantee perfectly protected data transmission. We show that a generalize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013